Mobile Accessibility Practices

(Making mobile applications accessible and usable for persons
with disabilities)



Table of Contents

1.

o LA WN

Problem statement
Inaccessible Government Apps
Inaccessible Private Apps
Impact
International position on mobile app standards
Methodology and approach
Purpose and objective
Introduction and explanatory note
Mobile Practices
Mobile Practice 1: Support platform accessibility settings
Mobile Practice 2: Provide proper labels for Ul elements
Mobile Practice 3: Provide role information for Ul elements
Mobile Practice 4: Provide hints for active Ul controls
Mobile Practice 5: Provide state information for a Ul control
Mobile Practice 6: Group the related Ul elements
Mobile Practice 7: Design a simple interface and provide enough spacing
Mobile Practice 8: Touch Target must be at least 9x9mm
Mobile Practice 9: Bring focus to the active Ul control
Mobile Practice 10: Use custom actions for context specific Ul controls
Mobile Practice 11: Provide a logical and meaningful sequence
Mobile Practice 12: Handle screen orientation change consistently
Mobile Practice 13: The content must be resizable
Mobile Practice 14: Color contrast must be minimum 4.5:1
Mobile practice 15: Color or shape should not be the only way to communicate important
information
Mobile Practice 16: onscreen keyboard and hardware keyboard must be accessible
Mobile Practice 17: Keep the gestures simple
Mobile Practice 18: Provide enough time
Mobile Practice 19: Provide captions for audio content and subtitles/transcripts for video
content that is accompanied by audio
Mobile Practice 20: Provide audio descriptions for video content
Mobile Practice 21: No content must flash more than 3 times a second

Appendix A - Case Study : BHIM app

Background

Problems

How to fix some of these issues
Conclusion

References

Contributors

Editorial
Contributors

0O N NN NOOOOOO O U, B AN DD WO WN R R

O O 00 00

9

9
10
11
11
11
12
13
14

Error! Bookmark not defined.

15
15



1. Problem statement

The shift to digital governance and availability of assistive technologies have been both
empowering as well as frustrating for persons with disabilities, who comprise
approximately 150 million of the Indian population®.

Government initiatives such as the Digital India campaign are increasingly delivering
basic functions of governance through information technologies. In the past year, the
government, private sector and the world at large have embraced mobile applications as
a preferred medium for user interactions and transactions.

The Mobile Seva App Store hosts 790 government apps, which provide services including
voter information, agricultural assistance, welfare scheme signups, and educational
content provision?.

In addition, the overall app market in India has also grown rapidly, with almost 5 times as
many apps downloaded in 2015 compared to the previous year®. These include apps
which let users access everyday services like transportation, communication and
entertainment.

However, for persons with disabilities, many of these apps, and consequently the
services they provide, are inaccessible and often impossible to use. Research in the past
year that looked at several apps, both government and private, found that a majority of
the apps are inaccessible and unusable, especially for persons with low vision and
blindness.*.

Some examples of inaccessible government and private apps are given below to aid a
better appreciation of the situation.

Inaccessible Government Apps

The ePathshala app for instance, is not usable by persons with visual disabilities. The
first screen that allows language selection is not labeled properly -- only the Hindi and
English buttons are correctly announced. Many of the options that are available on the
screen are not labeled with text, only graphics. In the absence of labels, a screen reader
is unable to comprehend and describe an image to its user. Furthermore, the books

1 https://zeroproject.org/policy/india/

2 https://apps.mgov.gov.in/index.jsp

3 http://trak.in/tags/business/2016/01/07/indian-mobile-app-industry-interesting-highlights-2015/

4 http://retail.economictimes.indiatimes.com/news/e-commerce/e-tailing/most-popular-apps-inaccessible-to-millions-of-disabled-says-study/55533796

5 http://factordaily.com/tested-18-government-apps-citizens-found-accessibility-issues-disabled/


http://factordaily.com/tested-�18-�government-�apps-�citizens-�found-�accessibility-�issues-�disabled
http://retail.economictimes.indiatimes.com/news/e-�commerce/e-�tailing/most-�popular-�apps-�inaccessible-�to-�millions-�of-�disabled-�says-�study/55533796
http://trak.in/tags/business/2016/01/07/indian-�mobile-�app-�industry-�interesting-�highlights-�2015
https://apps.mgov.gov.in/index.jsp
https://zeroproject.org/policy/india
http:blindness.45

themselves are PDF or JPEG images, which cannot be read using a screen reader, The
reading mode available for the books is also inaccessible.

The MyGov app, is a web based app, which is linked to a web site that is not completely
accessible. The graphics in particular are poorly labeled. The animations used are also
inaccessible, and the banner that scrolls the new announcement is completely unusable
for screen reader users.

The Prime Minister’s app, the Narendra Modi app is highly inaccessible. The very first
screen cannot be navigated by a visually impaired user. The controls on the rest of the
app are labelled in all caps, which makes using the screen reader difficult. If one selects
the feed option and follows a topic, the controls on the content screen are all simply
labelled “Narendra Modi”, making it impossible for the user to make an informed choice.
However, the text is presented using standard web controls, which means that once
navigated to, a page can be accessed using a screen reader.

In the case of the Aadhar mobile app, The first screen lacks alternate text for any of the
controls and graphics. Hence, it was impossible to test the app using a screen reader.
The Swachh Bharat app is yet another example of an inaccessible app; The starting
screen of this app is cluttered with controls and information, making it difficult to navigate.
A few controls are labelled with text, but the majority are inaccessible.

A detailed study of the inaccessibility of the BHIM app and the steps that need to be
taken to make it accessible, has been provided in Appendix A.

Inaccessible Private Apps

The situation gets no better when it comes to private Indian apps.

The Swiggy app, which is used to order food from nearby restaurants and big food
chains is inaccessible to screen reader users. The first screen shows the discount / offers
available using a graphics banner which is not marked with text making it completely
inaccessible. Only a few buttons are labeled and it is not possible to focus on menu
items. For instance, one can select the food category Soup but further selection of a
particular soup is not possible as the focus simply stays on the main category, which
makes it impossible to navigate the app and select items to order.

There are apps like Myntra and the ICICI - Pocket app to provide a host of banking
facilities amongst ICICI as well as non ICICI customers which have absolutely no screen
reader support and auditory feedback, rendering them completely inaccessible and
unusable.

In the Flipkart app, the lack of labeled buttons makes it difficult to read and select
options. It is also not user friendly.

In many of these cases, there is no alternate recourse for persons with disabilities to avail
themselves of the services which these apps provide.



Impact

Hence, despite the availability of technologies such as text to speech to enable access to
information independently, the failure to adhere to accessibility principles in India has had
the effect of denying access to critical resources and information. While international apps
such Amazon and Uber are completely accessible and user friendly, Indian apps remain
a constant source of frustration and reminder of their disabilities for persons with
disabilities. Instead of empowerment, there is a crippling effect on persons with different
disabilities in multiple ways.

The Government of India has recognised that accessibility is a concern which it needs to
address if it has to engage comprehensively and effectively with the public. The
Guidelines for Indian Government Web sites (GIGW 2009°), the National Policy on
Universal Electronics Accessibility (2013)” and most recently the Rights of Persons with
Disabilities Act 20162 all require compliance with web accessibility standards and
provision of public information and resources in accessible electronic format. The
increasing adoption of mobile as an engagement platform hence necessitates the
adoption of guidelines to ensure that applications are accesible to and usable for persons
with disabilities.

2. International position on mobile app standards

Presently there is no single international standard on the accessibility of mobile apps. The
World Wide Web Consortium (W3C) is working on a standard, which will take time to be
published. In the meantime it has published some best practices, primarily based upon
the (Web Content Accessibility Guidelines (WCAG) 2.0. There are also guidelines
available from Android, iOS, BBC and some to be found within 508. However, none of
these are comprehensive and cannot be adopted as is. Links to these guidelines are
provided in the reference section of this submission.

3. Methodology and approach

These practices have been put together by a group of accessibility and technology
experts from different organisations, most of whom are persons with disabilities
themselves and have extensive experience in the domain of assistive technology. They
draw upon the guidelines and best practices mentioned in the previous section, user
surveys and interviews conducted amongst persons with different types of disabilities as
well as any particular user experience insights gained by using Indian government/private

apps.

6 http://web.guidelines.gov.in/

7 http://pib.nic.in/newsite/PrintRelease.aspx?relid=99845

8 http://www.disabilityaffairs.gov.in/upload/uploadfiles/files/RPWD%20ACT%202016.pdf


http://www.disabilityaffairs.gov.in/upload/uploadfiles/files/RPWD%20ACT%202016.pdf
http://pib.nic.in/newsite/PrintRelease.aspx?relid=99845
http://web.guidelines.gov.in

4. Purpose and objective

Given that apps have already permeated the sphere of everyday life and the likelihood of
meeting one’s daily needs without apps is becoming almost impossible, it is critical that
this issue be addressed immediately. The purpose of this submission is hence to present
a set of guidelines/ practices which will inform mobile app developers about how to create
applications which will be accessible and usable to all persons, including persons with
disabilities. These practices are not comprehensive and we recommend annual review so
that these practices can be updated based on the feedback from users, developers and
experts.

5. Introduction and explanatory note

The objective of these mobile accessibility practices is to help developers, designers and
testers to create mobile apps that are universally accessible. An accessible application is
one which is usable by everyone irrespective of their abilities. These mobile accessibility
practices have been formulated after reviewing various globally accepted standards and
guidelines, as mentioned in the section on the international position on Mobile app
standards.

The Mobile Accessibility practices discussed below are not technology specific, but the
examples are based on either Apple iOS or Google Android operating systems. The other
mobile platforms are either not accessible or not used widely. The techniques to test or
implement a specific practice may differ depending on the operating system.

Both the Android and iOS operating systems provide standardized mechanisms to
communicate various attributes of a user interface element (Ul Element) such as the label
associated with a Ul element, role of a Ul element (such as whether it is a button or an
edit control,) and state information (such as whether it is disabled, checked or pressed.)
This mechanism is called Accessibility Application Programming Interface (API) and it
provides reasonably good information for standard Ul elements.

6. Mobile Practices

Mobile Practice 1: Support platform accessibility settings

Most mobile platforms provide accessibility settings such as contrast between
background and foreground text, invert colors, large text, grayscale, mono audio etc.
Users select the relevant setting as per their requirement and expect all the apps to
behave accordingly. Review all the accessibility options in the device settings and make
sure each accessibility feature behaves as intended. For example, if a user chooses
invert color option, and the app is already showing black text on a white background then
it should show white text on black background which is easy on the eyes for many users
with photosensitive eyes. Many other users without any well-known eye condition also
find this easier for prolonged reading.

Mobile Practice 2: Provide proper labels for Ul elements



There must be an accessible label for each Ul element, such as images, buttons and
other controls. An accessible label is recognizable by assistive technology such as
Voiceover or TalkBack. Avoid labels embedded into an image as they cannot be parsed
by screen readers.

Consider the following key points while labeling Ul elements:

1. A label must be precise and clear: Think about the purpose that the Ul element
serves. For example, label “Add to Cart” for adding an item to cart. Consider using
action verbs that describe the purpose of the Ul element in order to provide
appropriate labels.

2. Timely Update: In case the functionality of the Ul element changes, the label
must be updated as well. For example, “Play” button must change to “Pause” and
vice versa for media files. Updated labels make it easy for the users to interact
with the app.

3. Do not provide the role and state information as part of label: This information
is provided separately through Accessibility API (described in Practice 3). For
instance, “Play” button to be labeled as “Play”, and not “Play button” because the
button’s role will be indicated through accessibility API.

4. Localize the label strings: This is required for users using the applications in
different languages.

WCAG 2.0 corresponding success criteria: 1.1.1, 1.3.1, 2.4.2, 3.3.2, and 4.1.2.

Mobile Practice 3: Provide role information for Ul elements

Every Ul element can be identified visually with its look and feel. As users with blindness
cannot perceive visual information, the role for a Ul element must be available
programmatically so that assistive technology can report this either through speech or
Braille. In order to do so, use platform specific roles or traits for standard Ul elements. For
example, a button is announced as “Button” along with the label for assistive technology
users. In case of custom Ul elements, use platform accessibility API to report the role
information.

WCAG 2.0 corresponding success criteria: 1.3.1, 3.2.4 and 4.1.2.

Mobile Practice 4: Provide hints for active Ul controls

A Hint is a brief, localized phrase that describes the results of an action on a Ul control. It
is like a tool tip that lets the user find out how to interact with the Ul control. Hints are only
required for Ul controls that allow users some interaction, and are not required for Ul
elements such as labels or plain text. In case of custom Ul controls, hints also report the
screen reader gestures that users could perform to interact with the control. For example,
in a shopping website that has a button “Add” that adds items to the cart, the button could
have the hint as “Adds the item to the cart”. Similarly, for a drag and drop widget, the hint
can be “Double tap and hold until you hear a sound, then drag your finger to move the



element to the desired location and lift the finger”. The standard Ul controls have hints
supplied by the APlIs, but those hints might have to be changed depending on the usage.

WCAG 2.0 corresponding success criteria: 3.3.2 and 3.3.5.

Mobile Practice 5: Provide state information for a Ul control

In addition to the role of a Ul control, assistive technologies must identify the current state
of a Ul control. For example, the state of checkbox checked/ unchecked, tab selected or
not, a push button pressed or not etc. should be notified. This information must also be
reported as soon as it is changed. The standard Ul controls provide this information by
default, but for custom controls, this information must be supplied by platform specific
accessibility APls. The changes of state must be dynamically updated and accurately
available to the assistive technologies.

WCAG 2.0 corresponding success criterion: 4.1.2.

Mobile Practice 6: Group the related Ul elements

Related Ul elements such as song title and singer name for a song must be grouped
together so that assistive technologies can present it as a single Ul element, reducing the
gestures for interaction. This also helps to increase the touch target (Explained in
Practice 8) so that users with low vision, users having motor difficulties and users with big
fingers can more easily interact with it.
The following points are important for grouping related elements:

1. A group must have only one actionable Ul control.

2. Updating Ul controls such as progress bar must not be grouped with any other

control as users need only the updated information.

Mobile Practice 7: Design a simple interface and provide enough spacing

Make the Ul clean and simple. Avoid vertical and horizontal scrolling. This allows users
with low vision to zoom and interact with the controls with ease. Provide non-interactive
space between actionable Ul elements of at least one point for iOS or 1 DP for android.
This allows users with low vision, users having motor difficulties and users with big fingers
to avoid touching a wrong Ul element.

Mobile Practice 8: Touch Target must be at least 9x9mm

Many users find it difficult to interact with small screen elements. It could be due to big or
unsteady fingers or motor or visual difficulties. So, the touch targets must be at least
9x9mm regardless of screen size.

Mobile Practice 9: Bring focus to the active Ul control

Since Mobile screens are small, all the Ul elements cannot fit on the screen at a time. So
Ul elements such as buttons that take less space are used to bring up other Ul elements
such as dropdowns. For example, users would activate the “MM” button to bring up the
month dropdown. In such scenarios, the dropdown should get the focus when the user
activates the button. If the focus is not set properly, blind and low vision users may not be
able to realize that the Ul has changed. It sometimes takes many attempts to find out the

6



new elements and if such interactions are time sensitive, a timeout could occur and the
user would have to start all over again. Even without timeouts, new users could find it
difficult to manage such interactions thus impacting the user experience.

WCAG 2.0 corresponding success criterion: 2.4.3.

Mobile Practice 10: Use custom actions for context specific Ul controls

When a Ul control has context specific menu items, users must be informed that such a
menu is present and must be able to activate those menu items. A Custom Action is an
effective technique to support such an interaction. Both Android and iOS provide Custom
Actions that are available to assistive technology users. When an element with a custom
action is focused, assistive technology lets the user know that such actions are available
and then users can use well-known gestures to perform those actions. Alternatively, use
the accessibility API to report to the user what new Ul elements are available and where
such elements are present on the screen. This way users can locate those elements. This
technique should only be used if Custom Actions are not available.

WCAG 2.0 corresponding success criterion: 1.3.1.

Mobile Practice 11: Provide a logical and meaningful sequence

Screen reader mobile users rely on gestures to navigate and interact with the content and
the Ul controls. Content when navigated using the screen reader gestures, must form a
meaningful sequence. The controls on the mobile screens and the interaction produced
need to be logical.

WCAG 2.0 corresponding success criterion: 1.3.2,2.4.3.

Mobile Practice 12: Handle screen orientation change consistently

Assistive technology users could lock screen orientation to avoid interference with their
interaction with the device.
Pay attention to the following points while handling screen orientation:

1. Screen orientation change is disabled: If the user has turned on “Locked
Orientation” option for iOS or disabled the Auto-rotate screen option for Android,
then try not to change the screen orientation.

2. Screen orientation change is not disabled: Make sure that the screen
orientation change is not disruptive and the focus does not move from the focused
screen element.

3. Report screen orientation change using accessibility APIl: Report Screen
orientation at the start if it is different from the default setting when screen
orientation change is disabled. Otherwise, the change should be reported every
time the orientation changes.

Mobile Practice 13: The content must be resizable

Users with low vision may need to increase the size of the Ul elements to be able to see
well. The app must resize its Ul elements in accordance with device settings for text size.

7



WCAG 2.0 corresponding success criterion: 1.4.4.

Mobile Practice 14: Color contrast must be minimum 4.5:1

Users with low vision or users in poor lighting condition would find it difficult to see the Ul
elements on the screen if the foreground elements cannot be differentiated from the
background. Therefore, suggested color contrast ratio between foreground text for up to
18 point font and background must be at least 4.5:1 as per WCAG 2.0 Level AAor 7:1 as
per WCAG 2.0 level AAA.

WCAG 2.0 corresponding success criteria: 1.4.3 and 1.4.6

Mobile practice 15: Color or shape should not be the only way to communicate
important information

Relying only on color or shape to communicate important information can be problematic
for certain persons with disabilities such as users with color blindness or users with
blindness.

The following considerations are critical:

1. App designers must add text equivalence for color coded or shape
dependent information. For example, if an app has a required field, then it could
provide the word (Required) if the space permits or use placeholders.

2. The app must disable the button used to move the menu forward until the
field is filled-out. Just relying on the shape of a button to indicate the disabled
state does not work for many users with disabilities.

3. Apps must not use color-based references such as Click on Red or Square
button, instead have text references such as Click on Next button.

9

WCAG 2.0 corresponding success criteria: 1.4.1, 1.3.1 and 1.3.3.

Mobile Practice 16: onscreen keyboard and hardware keyboard must be
accessible

Mobile platforms provide support for both onscreen keyboard and hardware keyboard.
App designers must ensure that both are accessible with assistive technology such as
magnifier or a screen reader.

Note the following points while developing and testing the input interface:

1. Do not automatically change focus: If a user is entering data and the focus
shifts automatically, the user would find it difficult to enter data. Focus must be
changed only when the user activates a Ul element that is designated for
confirming an action such as the Submit button.

2. Select the correct onscreen keyboard: Ensure that the appropriate keyboard is
invoked by the app depending on the type of field or the data that needs to be
provided by the user. For example, the appropriate on-screen keyboard must be
invoked for normal text, numerical data, email address or web address. This

9 http://webaim.org/articles/visual/colorblind#designing


http://webaim.org/articles/visual/colorblind#designing

recommendation is not only helpful for users with disabilities, it also enhances the
comfort of other users.

3. Apps must be compatible with hardware keyboard: Though many users work
with the onscreen keyboard, others still prefer using a hardware keyboard that
comes built-in or is connected with mobile devices via Bluetooth. Therefore, apps
must be tested with hardware keyboards as well.

WCAG 2.0 corresponding success criteria: 2.1.1, 2.1.2, 3.2.1, 3.2.2 and 3.2.5.

Mobile Practice 17: Keep the gestures simple

Avoid gestures that require 3 or more fingers to interact with Ul elements. These complex
gesture patterns make application usage difficult for those who do not have the use of all
of their fingers, or use the device single-handedly. If such complex patterns cannot be
avoided, provide an alternate to perform the same action or allow the user to create a
custom gesture. For example, an added setting may be provided to customize gestures
as per user requirements.

Mobile Practice 18: Provide enough time

Many users require extra time to be able to finish an action. So, avoid session timeouts. If
a timeout cannot be avoided, then provide an option for users to extend the time limit
before the timeout occurs. Also, make sure that the time extension element focus is
properly set.

WCAG 2.0 corresponding success criterion: 2.2.1.

Mobile Practice 19: Provide captions for audio content and subtitles/transcripts for
video content that is accompanied by audio
Many users who have hearing difficulties or who find the language in the audio difficult to

understand would need captions or transcripts that help them to understand the text of
the audio.

WCAG 2.0 corresponding success criteria: 1.2.2,1.2.4,1.2.6, 1.2.8 and 1.2.9.

Mobile Practice 20: Provide audio descriptions for video content

Users with blindness may find it difficult to understand important visual information which
is not available in the audio format. If the application contains video that does not have an
audio equivalent, provide audio description for the content that is crucial for blind users to
understand the content. It is not required to provide audio for decorative and non-
essential video content.

WCAG 2.0 corresponding success criteria: 1.2.1,1.2.3,1.2.5,1.2.7,1.2.8



Mobile Practice 21: No content must flash more than 3 times a second

Some users get seizures if any content flashes more than 3 times per second. Therefore,
it is recommended that no content flashes more than 3 times a second.

WCAG 2.0 corresponding success criteria: 2.3.1 and 2.3.2.

10



Appendix A - Case Study : BHIM app

Background

Bharat Interface for Money (BHIM) is an initiative to enable fast, secure, reliable cashless
payments through mobile phone. BHIM is interoperable with other Unified Payment
Interface (UPI) applications, and bank accounts. BHIM is developed by the National
Payment Corporation of India (NPCI).

A user can simply register his or her bank account with BHIM, and set a UPI PIN for the
bank account. Users’ mobile number is payment address (PA), and user can simply start
transacting. Yes! It is that simple!

But that is not the case for many persons with disabilities, for whom the BHIM app is still
an unfulfilled promise. For both Android and iOS, it is not accessible for users with
disabilities, who are left out from the benefits of digital revolution.

Problems

In general, BHIM app has a few issues such as the inability to enter the desired
information and get feedback about the user interface.

The following specific problems have been found with BHIM App for both Android and
iOS app.

Android BHIM app issues

1. App uses own customized keyboard which is part of its user interface. Ideal to use
standard keyboard. Or implement accessibility support for the custom keyboard.

2. On this keyboard, Clear and Enter keys are not spoken as they are unlabeled.
This makes app usage very difficult to a Talkback user.

3. Customized Keyboard remains open which creates difficulty in the navigation for a
Talkback user.

4. In BHIM app back button, notification button and drop down menus are unlabeled
throughout the app.

5. One needs to use double tap to activate keyboard button instead of standard
method of move and lift.

6. Maybe for security purpose app is using customized /virtual keyboards but then
app should detect use of screen reader and accordingly provide accessibility.

7. In many places, hints and roles like edit boxes, auto fill in of OTP, moving to
another screen, focus to next element, etc. are not spoken by Talkback.

8. For edit fields it opens same customized/web keyboard which creates navigation
and data input barriers. E.g. for card number details field for MM and YY
navigation is for each digit. After inputting data keyboard remains open.

9. Overall app response is very poor for Talkback user due to many customized
elements.

10. All error messages should be in a pop ups with force focus for users but at
present error notification pops at the bottom and disappears.

11. Font sizes are nonstandard, at few places big and few too small.

11



iOS BHIM app issues

1. Some user controls in BHIM app cannot be clicked with Voiceover running which
is absolutely required for users to issue a command. Voiceover has a double tap
gesture which is similar to single tap for users without Voiceover. For example,
tapping on send option in transfer money does not do anything. Due to this issue,
a voiceover user cannot use BHIM app. Similarly, clicking on verify in send money
screen does not do anything.

2. For many controls, there is no indication about the type of control. Users need to
know what type of user interface control they are interacting in order to
understand how to interact with them. Voiceover provides different gestures to
interact with dropdown vs checkbox. This problem is found all over the app but a
few prominent examples are in ‘Select your bank’ and ‘Choose language’ screens.

3. There is no indication about the state of the user interface. For example, on
selecting a bank, there is no indication whether a bank is selected. User gets
confused whether any has been selected or not.

4. There are no back buttons in BHIM screens for users to be able to cancel an
action.

5. In enter passcode screen, the option shows show passcode, but the passcode is
still visible. This is a security hazard.

How to fix some of these issues

Both iOS and Android use accessibility Application Programming Interface (API) to get
information from the User interface elements and present this information to assistive
technology so that assistive technology such as voiceover or Talkback can present it for
users with disabilities. If a user interface element does not do so, Talkback and Voiceover
cannot facilitate interaction with these controls. The standard controls that these platforms
provide have accessibility by default. If developers use standard controls, those controls
should mostly be accessible. But if custom controls are used, some steps must be taken
to make them accessible.

Preparing iOS for accessibility

For iOS, to make any custom control accessible, first thing that needs to be done is to set
the property setlsAccessibilityElement to YES. Once this is done, other properties can be
set to provide additional accessibility information.

Providing Labels

Many options in BHIM app are not labeled so users with blindness are not able to find out
the purpose of the option. To understand how to define labels, refer to Mobile
Accessibility practice 2. To provide labels for these controls, use the following techniques:

* ForiOS, there are 2 ways to add custom labels. 1. Set the default label in
interface builder and 2. Implement accessibilityLabel method in the view subclass.
For more information refer to Making Your iOS App Accessible provided in
references.

* For Android, also there are 2 ways to add the labels. 1. For static text, use
android:contentDescription XML attribute, and 2. For dynamic elements, use

12



setContentDescription() method. For more information, checkout Making Apps
More Accessible for Android [provided in references].

Providing role and state information

Similar to labels, providing role and state information is very important for accessibility.
The role helps users to know how to interact with the Ul control. State lets the user know
the current state of the control i.e. whether something is selected or not.

For iOS, role and state are defined with what is known as attributes. So to indicate that a
Ul control behaves as a button, you would set setAccessibilityTraits to

UlAccessibility TraitButton. Similarly, you could combine other traits to indicate that a
control is selected etc.

For Android, role should be defined by the type of control specified. For example, if a
“Next” button is required, then use <Button> and provide other appropriate attributes. to
report any status change, use sendAccessibilityEvent method to indicate what has
changed. For example, if an element is selected, sendAccessibilityEvent(
TYPE_VIEW_SELECTED ) could be called.

Conclusion

This brief case study shows what is the impact of the BHIM app not being accessible and
how to solve couple of accessibility issues. As the examples demonstrate, fixing these
issues is not difficult, but it needs attention. For more information, corresponding
developer guides should be consulted.

13



References

Web Content Accessibility Guidelines (WCAG) 2.0
http://www.w3.org/ TR/ WCAG20/

Mobile Accessibility: How WCAG 2.0 and Other W3C/WAI Guidelines Apply to Mobile
http://www.w3.org/TR/mobile-accessibility-mapping/

BBC - Future Media Standards & Guidelines - Mobile Accessibility Guidelines v1.0
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile access.shtml

Making Your iOS App Accessible
https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/iP
honeAccessibility/Making Application Accessible/Making Application Accessible.html#//
apple ref/doc/uid/TP40008785-CH102-SW5

Making Apps More Accessible | Android Developers
https://developer.android.com/quide/topics/ui/accessibility/apps.html

14


https://developer.android.com/guide/topics/ui/accessibility/apps.html
https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/iP
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml
http://www.w3.org/TR/mobile-�accessibility-�mapping
http://www.w3.org/TR/WCAG20

Contributors

Editorial

Contributors

Dinesh Kaushal
NVDA Project Manager, Publicis.Sapient
dineshkaushal@hotmail.com

Dr. Nirmita Narasimhan

Policy Director, Centre for Internet and
Society

nirmita@cis-india.org

Prashant Ranjan Verma
pverma@daisy.org

Rakesh Paladugula

Accessibility Engineer Adobe Systems,
Founder Maxability.co.in.
rakesh@maxability.co.in

Srinivasu Chakravarthula
srinivasu.c@serveominclusion.com

Sujasree Kurapati

Managing Director, Deque Software Private
Limited

sujasree.kurapati@deque.com

Dipendra Manocha
President, National Association for the Blind, Delhi
dipendra.manocha@gmail.com

Manish Agrawal
Director of Technology, Publicis.Sapient
manish10@gmail.com

Pranay Gadodia
Disability Diversity Inclusion Expert
pranaybg@yahoo.co.in

Pranav Lal
contact@security-writer.com

Prashant Naik
Talking ATM India
pranaik@gmail.com

Saidarshan Bhagat
sai.bhagat@gmail.com

15



dineshkaushal@hotmail.com
nirmita@cis-�india.org
pverma@daisy.org
rakesh@maxability.co.in
srinivasu.c@serveominclusion.com
sujasree.kurapati@deque.com
dipendra.manocha@gmail.com
manish10@gmail.com
pranaybg@yahoo.co.in
contact@security-�writer.com
pranaik@gmail.com
sai.bhagat@gmail.com



