
Security of Open
Source Software
A Survey of Technical Stakeholders’
Perceptions and Actions

FEBRUARY 2023

AUTHOR:

Divyansha Sehgal

REVIEWERS:

Divyank Katira & Isha Suri

CONCEPTUALISATION:

Puthiya Purayil Sneha

SURVEY ORGANISATION:

Operations Research Group, India

COPY EDITING:

The Clean Copy

LAYOUT DESIGN:

Indumathi Manohar

This work is funded by the 2020 Digital Infrastructure
Fund, by the Ford Foundation, Alfred P. Sloan
Foundation, Open Society Foundations, Omidyar
Network and Mozilla Foundation in collaboration with
the Open Collective Foundation.

This work is licensed under a Creative Commons
Attribution 4.0 International License.

2023, Centre for Internet and Society, India

https://digitalinfrastructure.fund/
https://digitalinfrastructure.fund/
https://www.fordfoundation.org/
https://sloan.org/
https://sloan.org/
https://www.opensocietyfoundations.org/
https://omidyar.com/
https://omidyar.com/
https://foundation.mozilla.org/en/
https://opencollective.com/foundation
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://cis-india.org/

Contents
Introduction 6
Methodology 8

Development Of Survey Tool 9

Demographic Information 11

Findings and Discussion 12
Organisational Security Culture 13

Evaluation Checks 16

Adoption Checks 19

Post-Release Checks 22

Conclusions 23
Limitations 24

Endnotes 25

Executive Summary

Highlights at a Glance
of respondents work in companies with a dedicated
team responsible for the security of software. 80%
of them do not carry out any further security checks
on an OSS once it has been approved for use by their
security teams.

of respondents see comprehensive documentation as
an important factor when selecting an OSS for use.

of respondents report validating dependencies in their
selected open-source software component.

of respondents consider how actively an open-source
software is maintained before selecting it for their
projects.

of respondents do not anticipate accidental exploitation
of vulnerabilities or expect malice from bad actors
when they create software.

of respondents report not doing any post-release
maintenance on the OSS component used and deployed.

However, that is not always the case. Of late, there has been an increased
incidence of software supply-chain issues, with some industry reports
estimating a 300% increase in attacks that exploit existing vulnerabilities
between 2020 and 2021.

This report by Centre for Internet and Society surveys technical
stakeholders to determine how they select OSS components to use in
their projects and how they think broadly about the security of the
projects they create.

Open-source software (OSS)
components are largely
assumed to be secure due
to their open nature.

90%

80%

50%

30%

70%

40%

5

Takeaway 1:
Most stakeholders depend on security teams to thoroughly evaluate the
security of the software they have selected for use. Once an OSS project
has been approved for use by the in-house team, no further security
checks are deemed necessary.

Takeaway 2:
80% of technical stakeholders look for project documentation, and 70%
seek an active community around an OSS component. Only around 50%
look for evidence to suggest that the project is actively maintained.

However, this search for documentation, community, and regular
maintenance is motivated by a consumer outlook towards OSS that
prioritises the ability to solve problems and treats the community as a
‘help desk’ rather than a group of people working together to create a
useful service.

Takeaway 3:
Over 40% of people do not consider accidental exploitation of
vulnerabilities or intentional malice by bad actors as a threat when they
create software.

Takeaway 4:
Post-release maintenance of tools is quite common, with 70% of technical
stakeholders keeping track of and updating the OSS components they’ve
used in some way.

6

Open-source software (OSS) components are largely assumed to be secure
due to their open nature. Since code is free to be accessed and modified,
it is assumed that there are a large number of eyes it. Thus, an issue in
the code would be caught by someone in the ecosystem. However high-
profile bugs, such as Heartbleed which stems from a widely used open-
source web-encryption library, show that this is not always the case.1
Bugs and software vulnerabilities in open-source libraries can propagate
downstream to all software projects that use the component.

Open-source software are the building blocks of all modern consumer and
business facing software products. Most software applications are created
by re-using and modifying existing components for specific use cases.
The collection of OSS components used to create a software application
comprises that project’s supply chain.

Of late, there has been an increased incidence of software supply-chain
issues, with some industry reports estimating a 300% increase in attacks
that exploit existing vulnerabilities between 2020 and 2021.2

The SolarWinds attack that affected thousands of organisations, including
the US government, showed yet again how vulnerable the software supply
chain actually is.3

Introduction

Open-source software are
the building blocks of all
modern consumer and
business facing software
products. Most software
applications are created
by re-using and modifying
existing components for
specific use cases.

7

The reasons for this have also been discussed in detail in both academia
and industry. Nadia Eghbal’s comprehensive report outlines the following
issues4:

a vast majority of software projects are maintained by individuals
who do not have the resources to keep them secure;

most people who use OSS do not contribute to the libraries they use;

there are more consumers than there are maintainers of OSS;

developers are not incentivised to contribute to the community since
neither tech companies nor governments invest enough resources
into the ecosystem to sustain this open digital exchange.

Yet, OSS projects are thought to be an integral part of enterprise software
development, with many professionals pointing to its assumed secure
nature as a reason to increase adoption.5

Our study aims to further explore this apparent contradiction between
users’ perceptions and the reality of OSS security. Specifically, we look at
how professionals in the IT industry select the OSS components to use in
their projects and how they think about the security of the projects they
create.

8

For this study, we interviewed 410 IT professionals across
industries, including e-commerce, finance, automotive,
energy, health, hospitality, and insurance, to understand
their perceptions of OSS.

The survey was conducted in partnership with Operations Research Group,
India, an India-based survey agency, to administer the survey virtually at
scale.

We followed a purposive sampling method with respondents drawn from a
variety of technical implementations roles: developers, product managers
(PMs), technical PMs, technical team leads, etc. The interviewees were
selected if they have been working for an IT company for at least six
months and have experience selecting and using open-source projects or
components for their work. To participate in the survey, the respondents
received an honorarium in exchange for their time.

A survey tool was created to cover the socio-technical aspects of software
security including the security culture of the organisations that employees
belong to and the features of the code they evaluated (explained in detail
in the following section). The interviewers conducted a semi-structured,
in-depth online interview with participants over Zoom and probed their
choices further, which supplemented quantitative answers with personal
context. Prior to the commencement of interviews at scale, a pilot survey
was conducted with 30 participants that helped identify issues concerning
survey length and complexity.

We used the feedback to further refine the survey.

Methodology
01

9

Prior research shows that practitioners consider a variety of factors
including functionality and fit for the task, cost, license types, community
characteristics, documentation, and security.6

Reputation, performance, fit, and community metrics are repeatedly
mentioned as factors that determine the choice of an OSS.7,8,9,10,11
The security of OSS also finds repeated mention, but with much lesser
frequency than other factors across the literature reviewed.

Looking specifically at the security considerations of OSS, the literature
shows that most research focuses on the technical aspects of software
security.12 While important, these aspects do not offer a complete
picture since they ignore the context of a developer’s environment and
organisational preferences.

Software Assurance Maturity Model (SAMM) by the Open Web Application
Security Project (OWASP)13 is a model that considers the socio-technical
aspects of software security and sets guidelines for organisational
priorities depending on their scale. By combining the OWASP SAMM with
other best practices and software security frameworks, we created a
survey tool that seeks to assess the stakeholder approach to OSS security
across the following factors:

1. Organizational Security Culture
The security culture of an organisation is defined as the set of values and
cultural attitudes towards security embodied by employees and encouraged
by the management and executive decision makers.

Security culture depends on various factors including the size and maturity
of the organisation, the type of product they create, the business priorities
of the organisation, and personal security preferences of employees. It
determines how employees think of the security of the work they use or
create, how they prioritise it in their daily routines, and the extent to which
they seek out and follow best practices.

To create the survey tool,
we considered the literature
on how stakeholders select
OSS components they use
and how they determine
trustworthiness and fit.

Development Of Survey Tool

10

2. Evaluation Checks
A combination of academic and grey literature shows that the metadata
features of code and its context influence stakeholders’ trust in an OSS
component and may often stand in as a proxy for the estimated security of
this component.14,15,16 We asked stakeholders if and how they consider the
following contextual information about the code while they’re selecting an
OSS component to use:

3. Adoption Checks
Once a component has been evaluated regarding its ability to provide the
required functionality, and stakeholders verify if the required contextual
information such as documentation, metadata is up to their standards,
we sought to examine how closely evaluators look at the code itself to
determine its trustworthiness. We probed along the following lines:

What are the security best practices that respondents follow?

Do they look for third-party badges and certifications?

Do they test the code and its dependencies?

Project
Documentation:

Project documentation is any and all the text around a project that is
written by the OSS maintainers that is useful for the reader to understand
the code. It may include user guides and API documents that explain the
functionality expected, code samples and structure, the licenses needed,
and any other information that the OSS developer deems necessary for the
user to know. There are no enforceable rules around code documentation,
and they can often run the gamut from scant to comprehensive.

Project
Reputation
& Popularity:

The reputation and popularity of an OSS component play an important
role in evaluators’ decisions on whether to adopt it. While this is a less
straightforward measure than the presence of documentation, it can be
determined via metadata features that provide metrics like the number of
downloads, frequency of code commits and issue resolution, code quality,
recency of commit, etc.

Community: The people that use and contribute to an OSS component may gather in
online forums, issue trackers, messaging platforms, and other spaces to
discuss problems, raise questions, solve issues that users run into, and
generally help each other get started and troubleshoot issues with the
code. This sort of open discussion creates community knowledge that is
helpful for new and old users alike to keep track of issues and address
security vulnerabilities when they arise.

11

4. Post-Release Checks
Code maintenance is an important aspect of any software project. Our
survey tool included questions to understand the extent of security-related
activity once the development process is complete and the code is being
used by the intended users.

These verticals provide a comprehensive view of how stakeholders weigh
the security of the OSS components they use and the products they create.
The findings of our survey are also presented using these verticals.

Demographic
Information

Our final participant pool spanned a variety of technical and non-technical
roles, company sizes, and industries across India. Over 90% of our
respondents worked in technical roles that involved coding as part of their
daily jobs (Figure. 1).

The most common technical roles were software engineers,technology
consultants, and data analysts. Non-coding roles included quality and
testing analysts, project and product managers, and various types of non-
technical team leads.

Most of our final respondents worked in large companies (over 500
employees). Only about 30% of the sample comprised employees from
medium and small companies (Figure 2).

Figure 1: Over ninety per cent of our
respondents worked in technical roles that
involved coding as part of their daily jobs.

8%
Non-technical role

92%
Technical role

Figure 2: Most respondents worked in large
companies, with 30% working in medium
and small companies.

23%
Medium (50 to 500 employees)

70%
Large (50+ employees)

7%
Small (< 50 employees)

http://
http://

12

02
Findings and
Discussion

13

Organisational Security Culture

Ninety per cent of the respondents in our sample said that their companies
had separate teams that ensured the security of the software (Figure 4).
We also observed a correlation between the presence of security teams
and organisation size, with 93% of large organisations (500+ employees)
having a formal security team while only 65% of small organisations (<50
employees) did so.

The security team performs a variety of functions, including setting best
practices and automatically updating OSS software, as evident from
Figure 5.

Figure 4: 90% of the respondents had a
security team in their organisation.

90%
yes, have a security
team

10%
no, don't have a
security team

Sets security guidelines and best practices for
OSS

Educates employees about security of OSS via
sessions, workshops, websites etc

Evaluates open source libraries and approves
them for use

Performs threat assessments for the code
deployed (eg. Code audits, mimicking attacks,
bug bounties etc)

Communicates OSS updates and security issues
in the component being used

Automatically updates OSS tools once the
software you’re creating has been released to
production

Figure 5: Functions performed by security
teams.

92%

87%

82%

79%

78%

51%

http://

14

Figure 6: Functions performed by the
organisation without a security team

Sets security guidelines and best practices for
OSS

Educates employees about security of OSS via
sessions, workshops, websites etc

Evaluates open source libraries and approves
them for use

Performs threat assessments for the code
deployed (eg. Code audits, mimicking attacks,
bug bounties etc)

Communicates OSS updates and security issues
in the component being used

Automatically updates OSS tools once the
software you’re creating has been released to
production

78%

73%

55%

53%

48%

35%

Most security teams set and communicate guidelines and best practices for
their employees. Over 85% of employees also receive security education
in various forms, including sessions, workshops, and links to relevant
webpages. The participants in our survey cite both as extremely important
functions performed by the team.

However, only about 50% of the security teams set automatic updates
to the software components in use. It is the developer and their team’s
responsibility to stay on top of all information regarding the software used.

At the same time, the presence of a separate security team outsources
the security responsibility to only them. Respondents reported performing
checks for required functionality, documentation, and licenses before
adoption. However, nearly 80% of our sample was confident in using an
OSS component that has been approved by their company’s security
team, indicating that stakeholders do not do extensive security checks on
code that has been approved by their security team. This direct mismatch
between stakeholder and company expectations leaves room for software
vulnerabilities to creep in and propagate.

When security teams are not present, these organisational functions do get
performed, presumably by developers or the larger organisation, though to
a lesser extent across all the functions measured (Figure 6).

http://

15

Takeaway:

Most developers depend on security teams to thoroughly evaluate the
security of the software they have selected for use. Once an OSS project
has been approved for use by the in-house team, no further security checks
are deemed necessary.

Automatic security updates were observed in only 35% of companies
without security teams as compared to 50% in those with security teams.
A steep drop was also observed in the security education role of the
organisation, which fell from approximately 87% in companies with a
dedicated security team to 53% in companies without one.

We also asked participants for other practices their security teams
followed. Device surveillance and managing access to websites were the
most frequently cited functions. Many respondents reported that their
company devices logged keystrokes and recorded their action history.
Security teams seem to be responsible for environment integrity and
enforce this using a combination of surveillance and pre-emptive blocks on
known ‘unsafe’ websites.

Only one participant volunteered that their security team also has
emergency support functions in case of data breaches at their organisation.
A few others noted that their security teams conducted personnel training
that went beyond immediate software security and included tasks like
imitating phishing emails to keep employees up to date on best practices
that were not related to the software they were creating. This points to
the fact that security teams not only authorise OSS components for use,
but also perform a wide gamut of tasks pertaining to security education,
device safety, and access controls to protect against unauthorised access to
proprietary software. Software security also gives companies a justification
for workplace surveillance practices.

Further research can look more deeply into the structure of security teams
(including size, resources allocated, and physical and digital security roles
performed) across organisations of different sizes and the effect it has on
the overall security outlook of employees.

16

Evaluation Checks

Documentation Over 80% of respondents said that they consider the completeness of
project documentation when deciding what tool to use. As discussed,
documentation comes in many forms (Figure 7) and is mostly used for
functional purposes in the decision phase. Most stakeholders engage with
technical descriptions and API docs. The presence of a security policy is
also important, with 85% of the survey respondents reporting that they
specifically look for the project’s security policy.

Figure 7: Different forms of project
documentation.

Technical project description (README etc)

Presence of a security policy for the project

API documentation

General project description

Description of the open/closed issues or commit
messages

89%

86%

85%

81%

60%

Community Factors Community is an important factor as well. Employees are more comfortable
using software if other people are actively using it. More specifically,
stakeholders identify an active community around software components by
assessing activity on forums like StackOverflow, GitHub, and Quora. When
prompted, many participants pointed to the speed at which queries receive
responses as an important feature in evaluating total community activity.
To estimate responsiveness, stakeholders either pose questions in these
forums themselves or check the number of open and closed questions to
determine community activity. Employees also told us that they look for
educational documentation online as the presence of teaching modules
or advice documents from third parties is a good measure of community
activity. Internal company knowledge about the OSS in question is also
considered as it increases the possibility of getting advice and help from
colleagues. A few users also mentioned checking commit history to see how
quickly feature requests were delivered as usable features. This points to
a consumer outlook in users of open-source software. Stakeholders seem
less concerned with how the component gets created or maintained and
more focused on functionality and access to a dedicated ‘support team’ for
their problems.

17

Various metadata and contextual features can point to how popular and
well-regarded an OSS component is in the community (Figure 8).

In our sample, the presence of correct licences inspires trust in 78% of
people, followed by the readability of code at 73%. Knowing that other
packages depend on this code also increases trust in the software (67%).

This is consistent with the reports we have seen in the community section
of the survey as well: if colleagues with prior experience have advised the
use of a particular OSS tool, evaluators are likely to trust it as well.
Code owner/maintainer responsiveness is a somewhat less important
factor in evaluating reputation, with only 50–60% of respondents
considering metrics like the number of open issues, number of total
commits, and speed of responses (issue open and close dates and last
commit dates) as important.

Popularity and
Maintenance Metrics

Figure 8: Trends in popularity features of
an OSS component.

Has the required licenses needed

Has code that is readable and comprehensible

If other packages depend on this code

Total number of commits

Number of downloads in the last week

Number of likes

74%

68%

59%

49%

32%

78%

Drilling down further into attitudes towards issue resolution, we see that
50% of our respondents consider (in at least one way) how actively the code
is maintained and how quickly bugs get resolved before they commit to the
use of a component (Figure 9).

This shows that approximately half of the technical stakeholders are
not concerned with active maintenance and constant bug fixing of the
OSS project they’re selecting. An actively maintained project is expected
to be more secure since fixes are more likely to be pushed quickly and
consistently to downstream users.17 An abandoned OSS project will not
receive any software updates. The number of contributors to a package and
their organisational affiliations are less important for the evaluation and
adoption of code, with only 43% and 20% of respondents actively looking at
these metrics, respectively.

18

Figure 9: Trends in maintenance features
for OSS examination.

Number of open issues

Dates of the open/closed issues

Last commit date

Whether the issues and pull requests receive
responses from maintainers

Ratio of open to closed issues

Number of contributors to the package

If the contributors are from different
organizations

61%

58%

54%

52%

46%

43%

20%

Developer approaches towards project maintenance point to two other
less obvious outcomes. First, OSS users approach software as consumers
of the code rather than members of a community building a useful feature
together. Given that most stakeholders do not consider who is creating
the software or how it came into being, but only that it has been used by
other people and is thus trustworthy enough to use, it is reasonable to
conclude that they have no intentions of contributing back to the package
used. This is also supported by attitudes reported towards OSS community
activity and documentation completeness. Second, only about 50% of the
stakeholders surveyed actively examine the maintenance infrastructure
of OSS components. This implies that about half of the stakeholders do
not consider the possibility of introducing unintended bugs into their own
projects and thus opening them up to software vulnerabilities. One possible
reason could be that security thinking is passed on to a dedicated security
team, as seen in the previous sections, and stakeholders are left with the
role of perfecting the functionality of code.

Takeaway:

80% of technical stakeholders look for project documentation, and 70% seek
an active community around an OSS component. Only around 50% look for
evidence in some form that the project is actively maintained. However, this
search for documentation, community and reputable maintenance features
is motivated by a consumer outlook towards open-source software that
prioritises the ability to quickly resolve problems and treat the community
as a ‘help desk’ rather than a group of people working together to create a
useful service.

19

Adoption Checks

Adoption checks investigate the code itself once the potential software
component has been shortlisted. This can include following best practices
(Figure 10) such as conducting targeted testing of the software and its
dependencies.

Some best practices are popular: testing the security of the project’s build/
test/deploy pipelines (over 80%), looking for the existence of a continuous
integration process, and reviewing the file structure and code organisation
(nearly 80%) to verify that the code functions correctly as new functionality
is added. A lower percentage (though still more than 60%) of respondents
stated that they ensure that the OSS component they are considering has
security certifications or cryptographically signs releases.

Further research should explore the various ways in which this integrity
testing is done since our sample also stated that participants rarely
investigate software for security features once it has been approved for use
by their organisation’s security teams.

Figure 10: Best practices followed while
assessing OSS components for use.

Project’s build/test/deploy pipelines are secure

If the code has tests

File structure and code organisation

The project has set up a continuous integration
(CI) process to test existing code as new
functionality is added

If the code has dependencies

Security related certifications like the CII Best
Practices Badge, FIPS compliance, or similar
indicators

Uses branch protection

The project cryptographically sign releases

File naming conventions

60%

48%

82%

79%

79%

78%

76%

67%

66%

http://

20

Figure 11:
Trends in dependency verification.

Which Dependencies Are Present

If The Project Uses Tools To Help Automatically
Update Dependencies

The Project Has A Large Number Of
Dependencies, Disproportionate To The
Functionality It Brings

If The Project Pin And Declare The Dependencies

If The Dependences Can Be Validated As Well

If The Project Updates Dependencies In A Timely
Manner

75%

73%

71%

68%

65%

86%

Figure 12: Software testing behaviours of
the sample.

That Tests Are Present

whether the software runs tests in CI eg. GitHub
Actions, prow

The Presence Of Fuzzing Tool

65%

61%

53%

The most unexpected finding from our interviews was the prevalence of
self-reported dependency verification and thoroughness of testing. Based
on our literature review and media reports of security vulnerabilities
affecting widely used software libraries, we expected to see much
lower rates of dependency verification. Existing literature suggests that
developers and other stakeholders do not fully comprehend the extent
of direct or transitive dependencies that are present in the software they
create. 18.19,20

However, our findings indicate that 85% of respondents are aware of the
dependencies in the software they select, and over 70% confirmed that the
dependencies present can be validated (Figure 11).

The responses received on testing approaches agreed with the existing
literature after we removed internally conflicting data (see the Limitations
for more information). 65% of our sample said that they checked for the
presence of tests. Meanwhile, checking for the presence of automated
fuzzing tools was confirmed by 53% of the sample (Figure 12).

It is currently unclear whether this verification of tests and dependencies is
done by the respondents themselves or is assumed to be done by security
teams.

http://
http://

21

Further, nearly 80% of respondents test and seek general security
knowledge of OSS components before committing to them. However, the
assumption of targeted malice is much lower. Over 40% of the people in
our sample do not think that the code they write can be misused or hacked
by bad actors. Only half of the respondents check the vulnerability of
databases to see if the tool they are considering is listed (Figure 13).

This corroborates the findings in the previous sections regarding the
security team and issue maintenance. The security of the code does not
seem to be the respondent’s responsibility, and the possibility of bugs
propagating through the software supply chain is not a primary concern
for most employees. Extensively evaluating dependencies and testing
are presumably more functionality-related if security is not seen to be a
primary priority.

Takeaway:

Over 40% of people do not expect accidental exploitation of vulnerabilities
or intentional malice from bad actors when they create software.

Figure 13: Respondent assumptions of
threat in the projects they create

Seek security knowledge about the OSS
component

Assume bugs in code released to production can
be exploited by malicious actor

Check for reported unfixed vulnerabilities in the
OSS

Assume software created can be misused by bad
actors to introduce bugs

Assess the attack surface of the OSS component.
Eg handle untrusted user input, network
exposure

Check the National Vulnerability Database (NVD)
or use the Open Source Vulnerability(OSV)
database during security checks

78%

79%

59%

57%

54%

50%

22

Post-Release Checks

The prevalence of post-release maintenance habits is high, with nearly 90%
of respondents stating that they keep up to date with changing security
information and other updates about the OSS after the product they have
created is deployed to intended users. Only 30% of the respondents report
not doing any post-release maintenance (Figure 14).

Takeaway:

70% of technical stakeholders carry out post-release maintenance of the
OSS components they’ve used to create their projects.

Figure 14: Respondent actions towards OSS
once code has been released to production
for use.

I know when updates are made to the OSS tool
I’ve used in the software I’ve created

I update the open source components in a timely
manner via automated tools

I keep up to date with security issues relating to
the tools

I update the open source components manually
whenever I hear about changes

I do not do any post release maintenance of the
open source components

89%

77%

62%

57%

31%

23

Conclusions
03

We find that while the security of software is an important
feature in the adoption of OSS components, it is still
secondary to functionality. Many do not actively consider
the threat of bad actors when they create software to be
used by others. They do, however, still carry out post-
release maintenance to ensure that the products they have
created remain up to date.

Most stakeholders depend on security teams to thoroughly evaluate the
security of the software they have selected for use. Once an OSS project
has been approved for use by the in-house team, no further security
checks are deemed necessary. Further, users approach OSS components
with a consumer outlook. The search for documentation, community,
and reputable maintenance features is motivated by a consumer outlook
towards open-source software which prioritises the ability to get problems
solved quickly and treats the community as a ‘help desk’ rather than a
group of people working together to create a useful service.

24

Limitations Our survey is based on self-reported data, so respondents are susceptible
to providing answers that show them in a favourable light or which they
think the interviewees want to hear. We have tried to protect against this
limitation by rewording any questions that could lead the respondent
towards a particular answer and by reminding them that the survey is not a
reflection of their work ethic.

Subjective
Analysis:

Reducing complex categories like reputation and community down
to specific metrics necessitates a degree of subjective analysis. We
understand that different researchers may have different opinions on the
categorisation.

Defining “Open-
Source Code”:

During our pilots, we realised that the term “open-source code” meant
different things to people from companies with different business functions.
Some think of it as free software libraries that they can use without having
to pay for them, while others only interact with it as an end product like
Firefox.

Community
vs Enterprise
Software:

Employees using enterprise open-source software that is provided through
companies like Red Hat depend on support from Red Hat to customise
the components to business needs. This essentially creates a consulting-
like relationship between users and maintainers of the software rather
than there being a community that contributes to and builds each other’s
work. We learned this from our pilots, and it was repeated by many of our
participants. Our research currently does not make a distinction between
community open-source and enterprise open-source software; future
research should explore this dynamic further.

Testing section
Results:

There were inconsistencies in the results on testing (see Figure 3). It is
impossible to have more people checking to see if the functionality was
sufficiently covered than those who checked if tests were present. To deal
with this contradiction, we removed the data points on the thoroughness of
testing from our analysis and kept only the methods of testing.

if the tests sufficiently cover the functionality

if the tests present run as expected

if the tests are present

whether the software runs tests in CI eg. GitHub
Actions, prow

the presence of fuzzing tool

73%

72%

65%

61%

53%

Figure 3: Inconsistencies in the results on
OSS testing.

http://

25

Endnotes

1 Timothy B. Lee, “The Heartbleed Bug, Explained”, Vox, 14 May
2015, vox.com
2 Eran Orzel, 2021 Software Supply Chain Security Report. Argon
Security, January 2022. info.aquasec.com
3 Dina Temple-Raston, “A ‘Worst Nightmare’ Cyberattack: The Untold
Story of The SolarWinds Hack”, NPR, 16 April 2021, npr.org
4 “Roads and Bridges: The Unseen Labor Behind Our Digital
Infrastructure”, Ford Foundation, fordfoundation.org
5 “The State of Enterprise Open Source”, Red Hat, redhat.com
6 Valentina Lenarduzzi, et al., “Open Source Software Evaluation,
Selection, and Adoption: A Systematic Literature Review”, 2020 46th
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), (2020): pp. 437-444, doi: 10.1109/SEAA51224.2020.00076.
7 Gene M. Alarcon et al., “Trust Perceptions of Metadata in Open-
Source Software: The Role of Performance and Reputation”, Systems 8, no.
3 (2020): 28, doi.org.
8 Shao-Fang Wen, Mazaher Kianpour, and Stewart Kowalski, “An
Empirical Study of Security Culture in Open Source Software Communities”,
ASONAM ‘19: Proceedings of the 2019 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (2019): 863–870, doi.
org
9 Oyvind Hauge, Thomas Osterlie, Carl-Fredrik Sorensen, and
Marinela Gerea, “An Empirical Study on Selection of Open Source Software
– Preliminary Results”, 2009 ICSE Workshop on Emerging Trends in Free/
Libre/Open Source Software Research and Development (2009): 42–47, doi:
10.1109/FLOSS.2009.5071359.
10 Vieri del Bianco, Luigi Lavazza, Sandro Morasca, and Davide Taibi,
“A Survey on Open Source Software Trustworthiness”, IEEE Software 28,
no. 5 (2011): 67–75, doi: 10.1109/MS.2011.93.

https://www.vox.com/2014/6/19/18076318/heartbleed
https://info.aquasec.com/argon-supply-chain-attacks-study
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.fordfoundation.org/media/2976/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure.pdf
https://www.redhat.com/rhdc/managed-files/rh-enterprise-open-source-report-f27565-202101-en.pdf
https://doi.org/10.3390/systems8030028
https://doi.org/10.1145/3341161.3343520
https://doi.org/10.1145/3341161.3343520

26

11 Vieri del Bianco, Luigi Lavazza, Sandro Morasca, Davide Taibi, and
Davide Tosi, “An Investigation of the Users’ Perception of OSS Quality”,
Open Source Software: New Horizons, IFIP Advances in Information and
Communication Technology 319, (2010), doi.org
12 Shao-Fang Wen, “Software Security in Open Source Development:
A Systematic Literature Review”, 2017 21st Conference of Open Innovations
Association (FRUCT), (2017): 364–373, doi: 10.23919/FRUCT.2017.8250205.
13 “Explore”, OpenSAMM, accessed June 2022, opensamm.org
14 Gene M. Alarcon et al., “Trust Perceptions of Metadata in Open-
Source Software: The Role of Performance and Reputation”, Systems 8, no.
3 (2020): 28, doi.org.
15 “Our Software Dependency Problem”, research!rsc, accessed June
2022 , research.swtch.com
16 Vieri del Bianco, Luigi Lavazza, Sandro Morasca, and Davide Taibi,
“A Survey on Open Source Software Trustworthiness”, 67–75.
17 “Our Software Dependency Problem”, research!rsc.
18 “The Modern Packager’s Security Nightmare”, Michał Górny,
accessed June 2022, blogs.gentoo.org
19 Ken Thompson, “Reflections on Trusting Trust”, Communications of
the ACM 27, no. 8 (1984): 761–763, cs.cmu.edu.
20 “Dependency Confusion: How I Hacked Into Apple, Microsoft and
Dozens of Other Companies”, Alex Birsan, Medium, accessed June 2022,
medium.com.

https://doi.org/10.1007/978-3-642-13244-5_2
https://www.opensamm.org/explore/
https://doi.org/10.3390/systems8030028
https://research.swtch.com/deps
https://blogs.gentoo.org/mgorny/2021/02/19/the-modern-packagers-security-nightmare/
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

27

http://www.cis-india.org

	_heading=h.2et92p0
	_heading=h.3dy6vkm
	_heading=h.1t3h5sf
	_heading=h.4d34og8
	_heading=h.2s8eyo1
	_heading=h.17dp8vu
	_heading=h.3rdcrjn
	_heading=h.35nkun2
	Limitations
	Endnotes

	Post-Release Checks
	Conclusions

	Adoption Checks
	Evaluation Checks
	Organisational Security Culture
	Demographic Information
	Findings and Discussion

	Development Of Survey Tool
	Introduction
	Methodology

