
technical appendix

We shall continue to employ, with no more ado, the terminology and notation we have
already used to elaborate upon and examine mathematical matters.

1 For the supervised procedure we looked at above the raw training data was pre-
pared by grouping extracted lingual features into clusters distinguished from each other
by discrete degrees of polarity, recall, with a feature being assigned to its cluster via
the polarity of the documents which exhibit that feature: we shall set out here that
process of clustering the extracted features.

Suppose there are n labelled documents D1, D2, ... , Dn in the training data, out
of which n+ are positive, say, and n− are negative. Let φ1, φ2, ... , φm be the extracted
features. For each 1 ≤ j ≤ m let c+j be the count of positive documents exhibiting

φj and c−j the count of negative documents doing the same. Assume that neither

count is zero: how the ratio c+j /c
−

j diverges from the general ratio n+/n− seems a
plausible indicator, now, of the polarity of φj itself. The inventors of the procedure
do not worry that either c+j or c−j might be zero, we should note, and they take

ωj ≡ log

(

c+j /c
−

j

n+/n−

)

= log c+j − log c−j − log n+ + log n−

as their measure of polarity. The simplest way to deal with zeroes is to add one to the
counts c±j and, declaring ǫ±j = n±/c±j if c±j =/= 0 and 0 otherwise, set

ωj ≡ log(c+j + 1) − log(c−j + 1) − log(n+ + ǫ+j ) + log(n− + ǫ−j )

instead: which will not perturb the measure at all when c±j > 0, of course, since a/b =
(a+1)/(b+ b/a) when a, b =/= 0. But however zeroes are circumvented these measures
will lie toward zero when c+j /c

+
j ≈ n+/n−, and —because log(u/v) = − log(v/u) for

u, v > 0, and as each ωj is log(c+j /c
−

j ) translated by log(n−/n+) uniformly— the

numbers so obtained will increase or decrease symmetrically according to whether c+j
exceeds c−j or falls short of it: except when either count is zero, of course, when the
shifting will be marginally more or less. But zero counts would be rare presumably.
Neither n+ nor n− will be miniscule compared to the other, one expects —which
should keep the uniform translation small compared to the spread of the measures—
so with λ = min j{ωj} and ρ = max j{ωj} our quantities will all lie in the interval
[λ, ρ] with λ < 0 < ρ one may expect, and, assuming some parity in number and
degree between features with opposed polarities, the extent to which ωj is positive or
negative may be taken to gauge the polarity of the feature φj now. The features are
clustered now by clustering the corresponding measures: which, ideally, would group
themselves through varying proximities. The inventors of the procedure choose to
divide and enclose [λ, ρ] within some q < m intervals of equal length, rather, taking
equally spaced points ξ0 ≤ λ < ξ1 < ... < ξq−1 < ρ < ξq to determine their clusters,
and they declare two features φi and φj equivalent in polarity if the corresponding
measures ωi and ωj both lie in the same interval [ξk−1, ξk) for some 0 < k ≤ q. How
they decide on an optimal number of clusters they do not say, and, besides, proceeding
so is proper only if the {ωj} are distributed along [λ, ρ] in a more or less uniform way:
which is one reason more, besides the reasons already given, to question the propriety
of proceeding so.
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2 The general scheme of ‘local explication’ we looked at above, set out in [11],
attempted linear approximations to particular machine deliverances. The requirements
there were that the random vector X of which the inputs x are instances should
contain interpretable real-valued components comprising a random vector Xι, recall,
whose instances are interpretable counterparts xι of the inputs x, and, furthermore,
that the input vectors should admit a natural distance between them. Let u be
some fixed input for which deliverance is to be explicated, as before, and σu(x) a
real-valued index of proximity, between the fixed u and any other input x, which
decreases according to distance from u to x, and becomes practically zero when x
is far from u. For any input x the algorithm proceeds on the basis of a computed
scalar value f(x) of an objective function f, recall, and in [11] the interpretable linear
approximation to f near u is a vector of real weights ω which minimizes, over all
inputs x in a sufficiently large sample S randomly drawn from the general vicinity
of u, the scaled sum of squared differences

Lι,f
u (ω) ≡

∑

x∈S
σu(x)[f(x)− 〈ω, xι〉]2

where 〈ω, xι〉 is the standard inner-product of ω with the interpretable vector xι.
The notation means to convey that f and u are fixed while ω varies. Let ωι

u be the
optimal weighting that minimizes the scaled sum Lι,f

u for the interpretable redaction
uι of the given u : one cannot take ωι

u to explain how the algorithm arrived at f(u),
we had recorded, because a different algorithm and objective function might have
given us a similar vector of weights. Why f itself scored u just as it did would not be
disclosed by ωι

u either, we had noted, unless we could assess how uι itself contributes
to f(u) : which could seldom be done for an algorithm whose success depends on
learning some non-linear objective function. In the main text we had adverted to
a particular complication, moreover, with the general scheme of [11]: here that is.
Replace f with g(x) = f(x)+c for some real constant c : as the objective function is
changed by a fixed quantity, only, one should be able to recover the original deliverance
of the algorithm from g as well. We could do all this with the naive bayesian procedure
we had detailed, for instance, by setting f(x) = s+(x)π[+]− s−(x)π[−] and sign f(x)
as the orginal effective output of the algorithm. Now

ωι,g
u ≡ argmin ω

{
∑

x∈S
σu(x)[g(x)− 〈ω, xι〉]2

}

would be the locally linear approximation to g around u and, as the original deliv-
erance of the algorithm can be got from g as well as f, very likely, this vector is a
candidate for explicating its result at u as well: but

ωι,g
u 6= argmin ω

{
∑

x∈S
σu(x)[f(x)− 〈ω, xι〉]2

}

≡ ωu,f
ι

generally, and the resulting problem with the scheme in [11], as we noted, is that it
ignores how the values of the objective function are converted into effective output.
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